스마트폰을 활용한 자전거 교통정보 제공방안

How to Provide Bicycle Transportation Information Using Smartphone

김동준 · 이재용 · 정성엽
서 문

온실가스 배출량 감축을 위해서는 국내 온실가스 배출량의 약 20%를 차지하고 있는 교통 분야에서의 역할이 필요하며, 특히 대표적인 비동력·무탄소 교통수단인 자전거 이용의 활성화가 매우 중요합니다. 자전거 이용을 활성화시키기 위해서는 인프라 구축 및 운영제도 개선과 함께 자전거와 관련된 다양한 정보를 쉽게 빠르게 이용할 수 있는 환경을 구축해야 합니다.

최근 정보 이용의 중요한 수단으로 스마트폰(Bluetooth)이 활용되고 있습니다. 스마트폰의 보급률 및 정보 활용률은 급속히 증가하여 2010년 5월 기준 국내 스마트폰 판매량이 200만 대를 넘었으며, 향후에도 지속적인 증가를 보일 것으로 예상됩니다. 스마트폰은 위치 파악이 가능하고, 그 위치에 적합한 동적 정보를 실시간으로 제공할 수 있기 때문에 시시각각 변화하는 교통정보를 제공하는 수단으로 매우 적합합니다. 또한 대부분의 사람들이 휴대폰을 보유하고 있기 때문에 정보제공을 위한 별도의 장비가 요구되지 않으며, 이용자 맞춤형 정보의 제공이 가능하다는 장점도 있습니다.

이러한 배경 하에 본 연구에서는 자전거 이용자들에게 쉽게 빠르게, 이용자에게 맞는 자전거 관련 정보를 제공하는 방식에 대한 연구를 수행하였습니다. 이와 함께 대전광역시와 경기도 고양시의 공
공자전거 이용 정보, 지하철 위치 등이 포함된 자전거 교통정보 제공 애플리케이션인 ‘Now Biking’을 개발하였습니다. 본 애플리케이션은 2010년 6월 15일부터 서비스가 제공되고 있습니다.

마지막으로 본 연구를 위해 도움을 주신 자문위원, 지방자치단체 관계자 분들께 깊은 감사를 드리며, 연구를 수행하면서 노고를 아끼지 않은 연구진에게도 감사를 드립니다. 아무쪼록 본 연구에서 제시된 연구결과가 향후 효과적이고 새로운 교통정보 제공 체계 구축에 도움이 되기를 바라며, 개발된 애플리케이션이 자전거 이용자들에게 유용하게 활용되기를 바랍니다.

2010년 6월
한국교통연구원
원장 황기연
목 차

표 목 차 .. vii
그림목차 .. viii
요 약 ... xi

제1장 서론 .. 1

제1절 연구의 배경 및 목적 / 1
제2절 연구의 범위 및 수행방법 / 2

제2장 자전거 교통정보 제공 현황 ... 5

제1절 현재 제공되는 자전거 교통정보 및 제공방식 / 5
제2절 자전거 교통정보 제공방식의 한계 및 개선방향 / 10

제3장 자전거 교통정보와 스마트폰 ... 13

제1절 스마트폰의 정의 및 현황 / 13
제2절 자전거 교통정보와 스마트폰 / 16
제4장 자전거 교통정보 제공을 위한 스마트폰 활용방안 ……… 22

제1절 스마트폰을 이용한 자전거 교통정보체계 구축방안 / 22
제2절 자전거 교통정보 제공 애플리케이션(Now Biking) 개발 / 29

제5장 결론 및 정책 제언 …………………………………………………………… 38

참고문헌 ………………………………………………………………………………… 41

Abstract ………………………………………………………………………………… 43
표목차

<표 2-1> 자전거 교통정보의 종류 ... 6
<표 2-2> 지자체의 자전거 정보 제공 사례 .. 7
<표 2-3> 자전거 교통정보 제공방식별 문제점 10
<표 2-4> 이용자 위치파악 여부에 따른 자전거 정보의 분류 ... 11
<표 3-1> 일반 휴대폰과 스마트폰 비교 ... 14
<표 3-2> 스마트폰 활용을 고려한 자동차와 자전거의 특성 비교 ... 18
<표 3-3> '아이폰'용 자전거 관련 애플리케이션 현황 21
<표 4-1> 자전거 경로 검색 기능 구현 시 고려사항 23
<표 4-2> 자전거도로 정보 자료 ... 24
<표 4-3> 자전거 교통정보 제공 애플리케이션 'Now Biking'의 제공 정보 ... 31
그림목차

<그림 2-1> 지도 등의 안내 책자(제주도) ... 8
<그림 2-2> 자전거 안내 표지(서울 한강변) 8
<그림 2-3> GPS Tracking Data .. 9
<그림 3-1> 국내 휴대폰 시장에서 스마트폰 점유율 추이 15
<그림 3-2> 국내 스마트폰 판매량 현황 및 전망 15
<그림 3-3> 교통정보 제공방식의 변화 16
<그림 4-1> ‘아이폰’용 자전거 관련 애플리케이션 검색 화면 19
<그림 4-2> 자전거도로 및 경로 안내 애플리케이션(예시) 24
<그림 4-3> 자전거도로 정보의 수집 및 관리방안 25
<그림 4-4> 창원시 공공자전거 ‘누비자’ 26
<그림 4-5> 대전광역시 공공자전거 ‘타슈’ 27
<그림 4-6> 고양시 공공자전거 ‘FIFTEEN’ 27
<그림 4-7> 편의시설 정보 제공 애플리케이션(예시) 29
<그림 4-8> 애플리케이션 등록 절차 32
<그림 4-9> 증강현실을 이용한 애플리케이션 사례 33
<그림 4-10> 위치기반 서비스를 적용한 애플리케이션 사례 34
<그림 4-11> Now Biking 실행 초기화면 35
<그림 4-12> 증강현실이 적용된 Now Biking 실행화면 35
<그림 4-12> ‘Now Biking’ 실행화면(지도) 36
<그림 4-13> ‘Now Biking’ 실행화면(상세 정보) 36
<그림 4-14> 관련 기관 정보 ... 37
요 약

1. 서론

가. 연구의 배경 및 목적

자전거 이용 활성화를 위해서는 자전거 이용시설 구축 및 운영제도 개선 등의 자전거 이용 환경 개선과 함께 자전거와 관련된 다양한 정보를 쉽고 빠르게 활용하는 것이 중요하다. 최근 정보 이용의 중요한 수단으로 스마트폰(Smartphone)이 활용되고 있는데, 스마트폰은 이용자의 위치를 실시간으로 파악하고, 위치에 적합한 동적 정보를 제공할 수 있는 특징을 가지고 있어 시시각각 변화하는 교통정보를 제공하는 수단으로 매우 적합하다. 또한 대 부분의 사람들이 휴대폰을 보유하고 있기 때문에 정보 제공을 위한 별도의 장비가 요구되지 않으며, 이용자 맞춤형 정보 제공이 가능하다는 장점도 있다.

이러한 배경 하에 본 연구에서는 스마트폰을 이용하여 자전거 이용자가 필요한 장소에서 다양한 자전거 교통정보를 빠르고 효율적으로 활용할 수 있는 방안을 연구하였다. 이와 함께 실제 자전거를 이용하면서 활용할 수 있는 자전거 정보 제공 스마트폰용 애플리케이션을 시범적으로 개발하여 자전거 이용자가 본인의 위치를 기반으로 주변 자전거 정보를 이용할 수 있도록
록 제공하였다. 애플리케이션은 스마트폰 중 하나인 ‘아이폰’을 대상으로 개발하였다.

나. 연구의 범위 및 수행방법

본 연구는 2010년 상반기를 기준으로 수행되었으며, 전국을 대상으로 하였다. 단, 본 연구의 성과물 중 하나인 자전거 교통정보 제공 애플리케이션의 경우에는 공공자전거를 운영하고 있는 대전광역시와 경기도 고양시를 대상으로 구축하였다.

본 연구에서는 먼저 현재 제공되고 있는 자전거 교통정보의 종류와 특성을 살펴보았다. 이와 함께 자전거 교통정보 제공 현황을 분석하고 특징을 살펴보았다. 또한 지도, 책자, 홈페이지 등 자전거 이용자가 활용하고 있는 자전거 정보의 제공방식을 검토하였다.

더불어 자전거 교통정보 제공을 위한 스마트폰 적용 가능성을 살펴보았다. 이와 함께 스마트폰의 한 종류인 ‘아이폰’용 자전거 교통정보를 제공하기 위한 애플리케이션을 개발하였다. 본 애플리케이션은 대전광역시와 고양시를 대상으로 하며, 증강현실(AR, Augmented Reality)을 이용하여 공공자전거 이용 정보, 자전거 판매점 및 수리점, 지하철역 정보 등의 내용을 제공한다. 2010년 6월 15일 ‘Now Biking’이란 이름으로 서비스를 시작하였으며, ‘아이폰’ 이용자들은 무료로 다운받아 활용할 수 있다.

본 연구를 통해 자전거 교통정보 제공 내용 및 방식에 대한 개선방안을 제시하고, 실제 스마트폰용 애플리케이션을 개발함으로써 자전거 이용자의 교통 정보 제공 편의성을 증진시킬 것으로 예상된다. 나아가 자전거 교통정보 이용 수요 증대 및 이용 활성화를 기대할 수 있으며, 특히 대전광역시 및 고양시 공공자전거 이용 편의성 증대 및 이용 활성화를 기대할 수 있다.

본 연구는 위치기반 실시간 정보를 제공할 수 있는 스마트폰을 활용한 교통정보 제공방식의 필요성을 제시하고, 실제 자전거 이용자에게 유용하게
사용되는 성과물을 개발한다는 점에서 의의가 있다.

2. 자전거 교통정보 제공 현황

가. 현재 제공되는 자전거 교통정보 및 제공방식

자전거 교통정보는 중앙정부, 시민단체, 지자체 등에서 제공하고 있으며, 제공되는 정보는 크게 자전거 인프라(도로, 편의시설 등) 정보와 이용 정보로 나눌 수 있다. 인프라 정보는 자전거 도로, 보관시설, 수리시설, 공공자전거 정보 등이 이에 포함되며, 이용 정보는 자전거 이용 관련 법·제도, 자전거 일반상식, 테마 코스, 자전거 관련 뉴스 등이 이에 포함된다.

일부 공공임대 자전거를 시행하고 있는 지자체에서는 공공자전거 웹페이지를 독립적으로 운영하면서 공공자전거의 위치, 이용 가능 자전거 대수 및 반납 가능 자전거 거치대 대수 등의 정보를 제공하고 있다.

이와 같은 자전거 교통정보는 전용 웹페이지, 지도, 책자, 안내 표지, GPS Tracking Data 등의 형태로 제공, 활용되고 있다.

나. 자전거 교통정보 제공방식의 한계 및 개선방향

자전거는 외부환경에 영향을 많이 받는 교통수단으로 날씨, 고장 등 돌발 상황에 대처하기 위해서는 현장 정보가 필요하다. 자전거 정보 제공 웹페이지는 다양한 정보를 제공하지만 자전거를 이용하는 시점보다 이전에 정보를 습득해야 하는 문제점이 있고, 안내 책자의 경우 휴대가 가능하나 실시간 정보가 아니며 정보의 양도 적은 문제가 있다. 안내 표지의 경우 한정된 지역에서 한정된 정보만 표출이 가능하다는 한계가 있으며, GPS Tracking Data는 이동 중에 자신의 위치와 경로를 확인할 수 있으나 기존에 저장된 자료 만 활용이 가능하고 통합 관리가 안 되어 자료의 신뢰도 및 업데이트에 한계가 있다.
자전거 이용자에게 가장 필요한 정보를 제공하는 방향으로 개선될 필요가 있다. 자전거의 특성을 고려할 때 이용자 중심의 위치기반 정보를 제공할 필요가 있으며, 이를 위해서는 이용자의 위치를 확인하기 위하여 이용자 의 움도 및 경도를 확인할 수 있는 GPS가 내장된 장비가 필요하다.

현재 이용이 급증하고 있는 스마트폰은 기기 내 GPS 및 지자기 센서를 가지고 있어 위치, 경도, 고도 및 방향 정보를 기초하여 이용자가 위치기반 정보를 받을 수 있도록 되어 있다. 현재의 웹, 책자, 표지의 정보제공체계에서 벗어나자전거 이용자가 필요한 정보를 쉽게 획득할 수 있는 위치기반 정보의 자전거 이용 정보의 전환이 요구되는 상황에서 스마트폰은 이러한 문제를 해결할 수 있는 장점이 있다.

3. 자전거 교통정보와 스마트폰

가. 스마트폰의 정의 및 현황

스마트폰은 종류가 다양하고 차이점을 구분하기가 모호한 특성이 있다. 따라서 본 연구에서는 교통 측면에서 중요한 요소를 중심으로 스마트폰을 정의하였다. 스마트폰은 위치기반 정보를 활용할 수 있고, 개방형 OS(Operating System)를 탑재하여 새로운 프로그램의 설치 및 실행이 가능한 휴대폰을 의미한다.

스마트폰과 일반 휴대폰의 가장 큰 차이점은 ‘개방성’이다. 개방성이라는 휴대폰에 기본적으로 탑재되어 있는 프로그램 이외에 별도의 프로그램을 적용하여 휴대폰에 설치할 수 있다는 것이다. 스마트폰에는 웹용 프로그램을 수행하기 위한 CPU 및 메모리가 있고, 애플리케이션과 이용자 데이터를 저장할 수 있는 저장 공간이 있다.

스마트폰은 기존에도 존재하였으나 2009년 11월 미국 애플사의 국내 ‘아이폰’ 출시 이후에 관심이 급속도로 증가하며 각 휴대폰 제조사들은 앞다투
어 스마트폰을 출시하였다. 이에 따라 스마트폰의 시장점유율과 판매량은 가파르게 상승하였다. 스마트폰의 보급 확대는 정보의 실시간화, 위치기반화가 가능하기 때문에 교통정보 분야에 큰 영향을 미칠 것으로 판단된다.

나. 자전거 교통정보 제공을 위한 스마트폰 활용 가능성

교통정보 측면에서 보면 기존의 교통정보 제공방식은 교통수단을 운영하거나 정책을 수립한 공급자 측면에서 필요 정보를 선정하고 VMS, TV, 라디오 등을 통해 이용자들에게 제공하는 방식이었다. 그러나 이제는 교통수단을 이용하는 이용자가 필요한 정보를 능동적으로 활용하는 방식으로 변화하고 있다. 이에 따라 실시간 정보를 언제 어디서든 제공받을 수 있는 환경 구축이 요구된다. 스마트폰은 이러한 조건을 충족시킬 수 있는 가장 효율적인 수단이다.

현재 : 공급자가 정보를 제공하면 이용자가 수동적으로 파악

미래 : 이용자가 필요한 정보를 원하는 시간, 장소에서 파악

사용자 위치 기반 정보 실시간 정보 이용자 맞춤형 정보

<그림 1> 교통정보 제공방식의 변화

스마트폰이 자전거 이용 시 활용될 수 있는지를 검토한 결과 자전거에 매우 유용한 것으로 나타났다. 자전거 이용 시 스마트폰의 장점을 살펴보면 다음과 같다. 첫째, 자전거는 인간의 힘(human power)으로 움직이는 수단이므로 무게를 줄이는 것이 중요하듯 대부분의 자전거 이용자가 휴대폰을 소지
하고 있고, 무게가 많이 나가지 않기 때문에 이러한 문제를 해결할 수 있다.

둘째, 자전거 이용 시 철도, 트램, 버스 등의 대중교통과 연계하여 사용하는 경우가 많기 때문에 대중교통 정보를 이용하는 것이 중요하며, 이를 스마트폰으로 제공할 수 있다.

셋째, 최근 적극적인 자전거 이용 활성화 정책에 따라 여러 지역에서 자전거도로가 구축되고 자전거 보관시설이 설치되고 있다. 이에 따라 자전거 이용자는 편리하고 안전한 자전거도로를 이용하기 위하여 최신 정보가 필요하며, 스마트폰은 이를 만족시킬 수 있는 효율적인 수단이다. 또한 자전거 관련 표지판 등이 제대로 정비되어 있지 않은 경우에도 보완이 가능하다.

넷째, 자전거는 타 교통수단에 비해 상대적으로 '이동'보다는 '타는 것' 자체가 목적이 되는 경우가 많다. 이와 같은 특성은 최단거리 또는 최소통행시간이라는 경로 선택 요인보다 경관 등의 환경적 요소 및 주변 이용시설 등의 영향이 자전거 이용의 중요한 요인으로 작용하게 된다. 이를테면, 자전거 노선정보(tracking data), 주변의 역사 및 문화정보 등을 자전거 이용자들 간 공유하는 것 등은 좋은 예라 할 수 있다. 아울러 스마트폰의 애플리케이션을 활용하여 자전거를 이용하는 동안의 운동효과를 관측하는 것도 가능하다.

다섯째, 자전거는 자동차에 비해 상대적으로 간단한 구조를 갖고 있기 때문에 고장이 나도 자전거 이용자에 간단한 수리를 직접 할 수 있다. 자전거 이용 중 문제가 발생하면 자전거에 대한 전문적 지식을 사전에 습득하고 있지 않더라도 스마트폰을 통해 응급처치를 할 수 있다. 또한 자동차와 같은 보험 체계가 발달되어 있지 않기 때문에 가까운 자전거 수리점을 찾는 데도 스마트폰이 유용하게 사용될 수 있다.

지금까지의 자전거 관련 애플리케이션은 교통정보 제공측면에서 볼 때 부족한 것으로 나타났다. 이와 같은 배경 하에 자전거 교통정보를 자전거도로 정보, 공공자전거 이용 정보, 자전거 편의시설 정보의 3가지로 구분하여 스마트폰을 활용한 각각의 정보 제공방안을 제시하였다.
표 1. 스마트폰 활용을 고려한 자동차와 자전거의 특성 비교

<table>
<thead>
<tr>
<th>자동차</th>
<th>구분</th>
<th>자전거</th>
</tr>
</thead>
<tbody>
<tr>
<td>중량에 큰 영향이 없음</td>
<td>중량</td>
<td>중량 감소가 매우 중요함</td>
</tr>
<tr>
<td>자체 전원 장치가 있음</td>
<td>전원</td>
<td>자체 전원 장치가 없음</td>
</tr>
<tr>
<td>타 수단과의 연계가 상대적으로 적음</td>
<td>타 수단과의 연계</td>
<td>다른 교통수단과의 연계가 매우 중요함</td>
</tr>
<tr>
<td>도로 및 안전시설, 운영체계가 상대적으로 잘 정비되어 있음</td>
<td>이용시설</td>
<td>자전거도로 및 보관시설의 확충 등으로 이용 환경이 변화하고 있음</td>
</tr>
<tr>
<td>도로를 이용</td>
<td>경로</td>
<td>도로뿐만 아니라 산악, 화천변 등 다양한 경로 가능</td>
</tr>
<tr>
<td>오프라인과 온라인에서 정보가 제공되고 있음</td>
<td>정보제공</td>
<td>자전거 관련 표지판을 포함, 관련 정보 제공이 충분하지 않음</td>
</tr>
<tr>
<td>대부분 '이동'이 주요 목적임</td>
<td>목적</td>
<td>'이동'과 함께 자전거 '타는 것' 자체가 목적인 경우도 많음</td>
</tr>
<tr>
<td>전문지식이 필요하므로 기술자가 수행(고장 및 사고처리체계 구축)</td>
<td>고정 시처리</td>
<td>간단한 정비는 이용자가 수행</td>
</tr>
</tbody>
</table>

4. 자전거 교통정보 제공을 위한 스마트폰 활용방안

가. 스마트폰을 이용한 자전거 교통정보 제공 구축방안

스마트폰으로 제공할 수 있는 자전거 교통정보는 크게 3가지로 구분할 수 있다.

첫째, 자전거도로 정보이다. 자전거도로의 이용 정보는 이용자가 자신이 원하는 종류의 자전거도로를 이용하여 목적지까지 이동할 수 있도록 제공되어야 하며, 노선 등의 관련 정보가 제공되어야 한다. 또한 줌인(zoom in), 줌아웃(zoom out)을 통하여 쉽게 확인해 볼 수 있도록 전자지도상에 구축되어야 한다.

자전거도로의 경로 검색도 가능하게 경로를 모르는 이용자도 경로를 쉽게 찾을 수 있도록 구현할 필요가 있다. 온라인 서버에 경로 검색 알고리즘을 구현하고 스마트폰은 표출 기능만을 하도록 함으로써 프로그램 구현에 스마트폰의 운영시스템이 무리가 가지 않도록 해야 한다.
자전거도로 정보는 전국을 대상으로 구축되기 때문에 체계적인 정보 수집 및 관리가 중요하다. 각 지자체의 유형별 자전거도로 및 테마 자전거 노선, 동화회의 선호 노선 등 원시자료를 활용하여 이용자가 쉽게 원하는 경로를 검색할 수 있도록 해야 한다. 이와 함께 이용자 업데이트 환경 구현이 필요하다. 이용자가 이용한 경로는 동의하에 경로 업데이트에 활용할 수 있는 환경 구축도 중요하다.

둘째, 공공자전거 이용 정보이다. 각 지자체에서는 자전거 이용 활성화를 위하여 공공자전거 도입을 서두르고 있으며, 2010년 현재 창원시, 대전광역시, 고양시 등에서 운영되고 있다.

공공자전거 이용 정보는 각 지자체 홈페이지에 명시되어 있으며 스테이션의 단말기를 통해서도 제공되고 있다. 하지만 스테이션으로 접근을 원하는 사람, 공공자전거에 탑승하여 이동 중인 사람, 해당 지역에 거주하지 않아 상황을 모르는 사람은 이용할 수 없기 때문에 이용하면서 활용할 수 있는 스마트폰을 통하여 정보를 제공함으로써 공공자전거에 대한 정보 제공의 한계를 극복할 수 있다.

셋째, 자전거 편의시설 정보이다. 자전거는 레저·스포츠 활동으로 이용 중 영양분 섭취, 수분 섭취가 필요하며, 평크 등 갖은 고장이 발생하기 때문에 편의시설에 대한 위치 정보가 필요하다. 또한 출퇴근 등 생활형으로 자전거를 이용하는 경우에는 주변에 주차가 가능한 곳, 환승이 가능한 곳의 정보도 필요하다.

스마트폰으로 제공해야 하는 편의시설 정보로는 이용자 주변의 가까운 수리시설 및 휴게시설, 주차시설 등의 정보, 편의시설까지의 거리, 운영 시간, 연락처 등의 정보, 대중교통 환승을 위한 버스터미널, 기차역 등의 정보가 있다. 편의시설에 대한 정보를 제공할 때에는 방향별·거리별로 정보가 제공되어야 하는데, 가까운 편의시설의 위치가 먼저 나타나도록 해야 하며, 이용자가 거리를 설정하여 가까운 곳을 찾을 수 있도록 해야 한다. 지하철역 등 환승시설에 대한 정보를 제공하여 이용자가 가까운 역의 위치를 쉽게
나. 자전거 교통정보 제공 애플리케이션(Now Biking) 개발

자전거는 생체에너지로 움직이기 때문에 타 교통수단보다도 위치기반 정보가 더욱 중요하다. 정보가 부정확하거나 모호한 경우 되돌아와야 하며, 이때 많은 체력이 소모되기 때문이다.

본 연구에서는 이러한 정보와 함께 자전거 이용 활성화에 긍정적인 영향을 미치고 있는 공공자전거가 설치된 지역을 대상으로하여 애플리케이션인 ‘Now Biking’을 개발하였다. 대상지역은 스마트폰 보급률이 높은 수도권 지역, 규모가 큰 도시를 우선으로 하여 선정하였다. 스마트폰 이용자 중에서 자전거를 타야하고, 그중에서도 공공자전거를 이용하는 사람만을 대상으로 하기 때문에 이용자 대상 범위가 좁아지는 한계가 존재하므로, 현재 가장 많은 애플리케이션 이용자를 확보한 ‘아이폰’용 애플리케이션인 ‘Now Biking’을 먼저 개발하였다.

자전거 교통정보 제공 애플리케이션은 현재 공공자전거가 활발히 운영되고 있는 대전광역시와 경기도 고양시를 대상으로 하였다. 대전광역시는 인구 100만 명 이상의 광역시로 현재 ‘타슈’라는 공공자전거를 운영하고 있으며, 지하철이 운영되고 있는 도시이다. 고양시도 마찬가지로 ‘FIFTEEN’이라는 공공자전거를 운영하고 있으며 지하철이 운영되고 있다. 이 같은 조건이 증강현실을 이용하는 스마트폰 활용에 부합하기 때문에 두 도시가 대상으로 선정되었다. 단, 자료의 한계로 자전거 전용도로 및 자전거 판매/수리점에 대한 정보는 대전광역시만을 대상으로 하였다.

본 연구에서 개발한 자전거 애플리케이션은 이용자 위치정보를 기반으로 제공되며, 제공되는 정보는 <표 2>와 같다.
자전거 교통정보 제공 애플리케이션인 Now Biking의 제공 정보

<table>
<thead>
<tr>
<th>구분</th>
<th>제공 정보</th>
</tr>
</thead>
</table>
| 공공자전거 실시간 정보 | • 증강현실을 이용한 공공자전거 거치소의 위치정보 제공 (방향, 거리)
• 지도에 현재 위치와 공공자전거 거치소의 위치정보 제공 (방향, 거리)
• 공공자전거 거치소의 실시간 이용정보 (대여가능대수, 반납가능대수 등) 제공
• 공공자전거 이용요금 등 관련 정보 제공 |
| 자전거 수리점 및 판매점 위치와 정보 | • 증강현실을 이용한 자전거 수리점 및 판매점의 위치정보 제공
• 지도에 현재 위치와 자전거 수리점 및 판매점의 위치정보 제공
• 자전거 수리판매점의 주소, 전화번호 정보 제공
• 자전거 수리판매점 전화걸기 (one-click) 기능 제공 |
| 지하철 출구 정보 | • 증강현실을 이용한 지하철 출입구 위치정보 제공
• 지도에 현재 위치와 지하철 출입구 위치정보 제공 |
| 자전거도로 정보 | • 자전거 전용도로/자전거 전용차로를 지도에 표시 |
| 자전거 이용 관련기관 연락처 | • 공공자전거 운영기관, 지하철 운영기관, 시청 및 한국교통연구원 연락처 제공
• 전화걸기 (one-click) 기능 제공 |

<표 2> 자전거 교통정보 제공 애플리케이션인 Now Biking의 제공 정보

<그림 2> Now Biking 실행 초기화면

<그림 3> 증강현실이 적용된 Now Biking 실행화면
5. 결론 및 정책 제언

자전거 교통정보는 크게 일반 정보와 이용자 위치기반 정보로 구분할 수 있다. 자전거 이용 활성화를 위해서는 이용자가 쉽고 빠르게 원하는 정보를 이용할 수 있는 위치기반, 실시간 정보 제공 환경을 구축할 필요가 있다.

자전거 이용자의 위치에 맞게 실시간 교통정보를 제공하는 방식으로 각 개인이 휴대하고 있는 스마트폰이 매우 유용하게 활용될 수 있다. 스마트폰 이용자는 매우 빠르게 증가하고 있는데 2010년 5월 현재 200만 대가 보급되었으며, 향후 더욱 증가할 것으로 예상되고 있다.

이러한 배경하에 본 연구에서는 자전거와 관련한 정보를 자전거 이용자들에게 쉽고 빠르게, 이용자에 맞는 정보를 제공하는 방식에 대한 연구를 수행하였다. 본 연구에서는 이용자 위치기반 정보의 종류를 검토하고 이를 제공하기 위한 방안으로 스마트폰의 가능성을 분석하였다. 스마트폰은 다양한 정보를 표출할 수 있고 가볍기 때문에 자전거 이용 시 매우 유용하게 활용이 가능하다.

스마트폰의 능동적이며 적극적인 활용은 교통정보 제공에 유용하게 활용될 수 있다. 즉 기존의 수동적이며 공급자 위주의 교통정보 제공방식에서, 이제는 수요자 중심의 능동적 제공방식으로의 변화가 필요하다는 것이다.

이와 함께 본 연구에서는 대전광역시와 고양시의 공공자전거 이용 정보, 지하철 위치 정보 등이 포함된 자전거 교통정보 제공 애플리케이션인 'Now Biking'을 개발하였으며, 2010년 6월 15일 미국 애플사에 등록되어 현재 아이폰에 서비스가 제공되고 있다.
제1장 서론

제1절 연구의 배경 및 목적

1. 연구의 배경

기후변화와 에너지 위기 등의 전 세계적인 문제로 인해 많은 국가에서 온실가스 배출량 및 에너지 사용량을 감소시키기 위한 노력을 기울이고 있다. 우리나라에서도 녹색성장이라는 새로운 패러다임으로의 변화와 함께 온실가스 감축 목표를 설정하고 실천 계획을 수립하고 있다. 특히 교통 분야는 국내 온실가스 배출량의 약 20%를 차지하고 있기 때문에 온실가스 감축을 위한 역할이 매우 크다고 할 수 있다. 따라서 교통 분야의 적극적이고 효과적인 온실가스의 감축 노력이 필요하다.

교통 분야에서 에너지를 사용하지 않고 온실가스를 배출하지 않기 위해서는 보행, 자전거 등의 비동력·무탄소 교통수단의 이용 활성화가 요구된다. 자전거는 단거리뿐만 아니라 중~장거리 통행도 가능한 교통수단으로 전 세계적으로 이용 활성화를 위한 다양한 노력이 기울여지고 있다. 자전거 이용 활성화를 위해서는 자전거 이용 시설 구축 및 운영제도 개선 등의 자전거 이용 환경 개선과 함께 자전거와 관련된 다양한 정보를 쉽고 빠르게 활용하는 것이 중요하다. 그러나 자전거에 대한 충분한 정보가 제공되고 있지 않
은 설정으로 원하는 정보를 쉽게 파악하기 어렵거나 시간이 많이 소요되는 문제는 자전거 이용 활성화의 한계로 작용하고 있다.

최근 스마트폰 보급률 및 정보 활용률은 급속히 증가하고 있는데, 2010년 5월 기준 국내 스마트폰 판매량은 200만 대를 넘었으며 향후에도 지속적으로 증가될 전망이다. 스마트폰은 이용자의 위치를 실시간으로 파악하고, 위치에 적합한 동적 정보를 제공할 수 있는 특징이 있는데, 이러한 장점으로 인해 시시각각 변화하는 교통정보를 제공하는 수단으로 매우 적합하다. 또한 휴대폰은 대부분의 사람이 보유하고 있기 때문에 정보 제공을 위한 별도의 장비를 요구하지 않으며, 이용자 맞춤형 정보 제공이 가능하다.

2. 연구의 목적

이러한 배경하에 본 연구에서는 스마트폰을 이용하여 자전거 이용자가 정보가 필요한 장소에서 다양한 자전거 교통정보를 빠르고 효율적으로 활용할 수 있는 방안을 제시한다. 이와 함께 실제 자전거를 이용하면서 활용할 수 있는 자전거 정보 제공 스마트폰용 애플리케이션을 시범적으로 개발하여 자전거 이용자가 무료로 이용할 수 있도록 제공한다. 애플리케이션은 스마트폰 중 하나인 ‘아이폰’을 대상으로 개발하였다.

제2절 연구의 범위 및 수행방법

1. 공간적 범위

본 연구는 자전거를 이용할 수 있는 전국을 대상으로 수행하였다. 단, 본

1) 애플리케이션(application)란 일반적인 소프트웨어를 통칭함. 본 연구에서는 스마트폰의 OS 위에서 이용자가 직접 사용하게 되는 소프트웨어들을 뜻함.
연구의 성과물 중 하나인 자전거 교통정보 제공 애플리케이션의 경우 실제 자료를 대상으로 개발해야 하므로, 본 연구에서는 공공자전거를 도입, 운영 하고 있는 대전광역시와 경기도 고양시를 대상으로 구축하였다.

2. 시간적 범위

스마트폰 정보 제공 및 이용의 급격한 환경 변화와 공공자전거 확대 도입 등을 고려할 때 가장 최근의 자료를 활용할 필요가 있다. 따라서 2010년 현재 구득할 수 있는 최근의 자료를 활용하여 연구를 수행하였으며, 자료 구득이 불가능한 경우 2009년 자료를 활용하였다. 애플리케이션의 경우, 고양시와 대전광역시의 공공자전거 이용 정보를 실시간으로 제공하는 것으로 이용자가 이용하는 시점의 정보를 제공한다.

3. 내용적 범위

본 연구는 다양한 자전거 교통정보를 스마트폰을 활용하여 제공하는 방안을 제시하는 것으로 다음과 같은 내용을 포함한다.
- 현재 제공되고 있는 자전거 교통정보의 종류 및 제공방식
- 자전거 교통정보 제공방식의 문제점
- 스마트폰 증가 추이 분석 및 자전거 교통정보 제공 가능성
- 스마트폰을 이용한 자전거 교통정보 제공 방안
- 공공자전거 이용정보 제공을 위한 스마트폰 애플리케이션 개발

4. 연구 수행 방법

본 연구에서는 먼저 현재 제공되고 있는 자전거 교통정보의 종류와 특성을 살펴보았다. 이와 함께 자전거 교통정보 제공 현황을 분석하고 특징을 살펴보았다. 또한 지도, 책자, 홈페이지 등 자전거 이용자가 활용하고 있는
자전거의 정보 제공방식을 검토하였다.

더불어 자전거 교통정보 제공을 위한 스마트폰 적응 가능성을 살펴보았 다. 스마트폰의 판매 추이 및 활용 정도, 자전거 교통정보 제공의 용이성 등 을 검토하였다. 이와 함께 스마트폰의 한 종류인 ‘아이폰’용 자전거 교통정보를 제공하기 위한 애플리케이션을 개발하였다. 대전광역시와 고양시를 대 상으로 하고, 증강현실(AR, Augmented Reality)을 이용하여 공공자전거 이용 정보, 자전거 판매점 및 수리점, 지하철역 정보 등의 내용이 제공되는 애플리케이션으로, 미국 애플사의 등록을 통해 자전거 이용자들이 무료로 다운받아 활용할 수 있도록 개 발하였다. 2010년 6월 15일 ‘Now Biking’이란 이름으로 서비스가 시작되었으 며, ‘아이폰’ 이용자들은 무료로 다운받아 활용할 수 있다.

2) 증강현실(AR, Augmented Reality)이란 현실세계에 가상정보를 실시간으로 결합하여 보여주는 기 술로, 모든 환경을 컴퓨터 3차원 이미지로 재작하는 ‘가상현실(VR, Virtual Reality)’과는 다른 개념 이다. 증강현실은 현실 영상 위에 가상의 정보가 중첩되는 복합형 가상현실 시스템(Hybrid VR System)으로 가상현실보다 더욱 현실감이 가중되는 특성이 있는데, 이 때문에 혼합현실(MR, Mixed Reality)이라고도 함
제2장 자전거 교통정보 제공 현황

제1절 현재 제공되는 자전거 교통정보 및 제공방식

1. 자전거 교통정보

자전거 교통정보는 중앙정부, 시민단체, 지자체 등에서 제공하고 있으며, 제공 정보는 크게 자전거 인프라(도로, 편의시설 등) 정보와 이용 정보로 나눌 수 있다. 인프라 정보는 자전거도로, 보관시설, 수리시설, 공공자전거 정보 등이 이에 포함되며, 이용 정보는 자전거 이용 관련 법제도, 자전거 일반상식, 테마 코스, 자전거 관련 뉴스 등이 이에 포함된다.

현재 제공되는 정보는 대부분 자전거도로와 수리시설 등의 자전거 인프라 관련 정보와 이벤트성 행사에 대한 정보가 대부분을 차지하고 있다. 일부, 공공임대 자전거를 시행하고 있는 지자체에서는 공공자전거 웹페이지를 독립적으로 운영하면서 공공자전거의 위치, 이용 가능 자전거 대수 및 반납 가능 자전거 거치대 대수 등의 정보를 제공하고 있다.
<표 2-1> 자전거 교통정보의 종류

<table>
<thead>
<tr>
<th>정보 종류</th>
<th>내용</th>
<th>필요 시점</th>
</tr>
</thead>
<tbody>
<tr>
<td>인프라 정보</td>
<td>자전거 도로시설 정보</td>
<td>자전거 이용 전</td>
</tr>
<tr>
<td></td>
<td>· 자전기 도로 지도 정보 제공</td>
<td>자전거 이용 중</td>
</tr>
<tr>
<td></td>
<td>· 자전기 도로 유형별 현황 제공</td>
<td></td>
</tr>
<tr>
<td>자전거 이용</td>
<td>자전거 보관시설</td>
<td>자전거 이용 중</td>
</tr>
<tr>
<td>권익시설 정보</td>
<td>자전거 수리시설</td>
<td></td>
</tr>
<tr>
<td>공공자전거 정보</td>
<td>공공자전거 대여 방법 및 요금 소개</td>
<td>자전거 이용 전</td>
</tr>
<tr>
<td>제공</td>
<td>· 대여 위치 소개</td>
<td>자전거 이용 중</td>
</tr>
<tr>
<td></td>
<td>· 대여 가능한 자전거 수</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 반납 가능한 자전거 수</td>
<td></td>
</tr>
<tr>
<td>자전거 태마코스 정보</td>
<td>· 자전거 탐방 코스 안내</td>
<td>자전거 이용 전</td>
</tr>
<tr>
<td>이용 정보</td>
<td>· 자전거 역사</td>
<td>자전거 이용 중</td>
</tr>
<tr>
<td></td>
<td>· 자전거 종류</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 자전거 관리방법</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 자전거 타는 방법</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 자전거 관련 법규</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 자전거 수리방법</td>
<td></td>
</tr>
<tr>
<td>커뮤니티</td>
<td>· 지역별 동호회 운영</td>
<td>자전거 이용 전</td>
</tr>
<tr>
<td></td>
<td>· 자전거 교육</td>
<td>자전거 이용 중</td>
</tr>
<tr>
<td>자전거 관련 뉴스</td>
<td>· 자전거 관련 뉴스 제공</td>
<td>자전거 이용 전</td>
</tr>
<tr>
<td></td>
<td>· 지역별 자전거 행사소식 제공</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 자전거 관련 정책 소개</td>
<td></td>
</tr>
<tr>
<td>관련 법 제도</td>
<td>· 자전거 관련 법령 소개</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 자전거 통행법에 관한 규칙 정보</td>
<td></td>
</tr>
</tbody>
</table>

2. 자전거 정보 제공 방식

가. 웹페이지

자전거 전용 웹페이지는 서울시 강남구, 대전광역시, 부천시, 고양시 등에서 운영되고 있으며, 자전거 도로정보 및 수리시설 등 인프라 정보와 이용정보 등 다양한 정보를 제공하고 있다. 자전거를 이용하는 사람은 웹페이지를 통하여 각종 정보를 얻을 수 있다. 자전거교통정보는 각 지자체에서 제공하고 있으며, 제공되는 정보는 크게 자전거정보 및 자전거 이용시설에 대한 내용과 테마 코스, 공공자전거(임대자전거) 안내, 자전거 교실 등이다.
<표 2-2> 지자체의 자전거 정보 제공 사례

<table>
<thead>
<tr>
<th>지자체명</th>
<th>웹페이지 초기화면</th>
<th>주요 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>서울시 강남구</td>
<td></td>
<td>- 자전기도로
- 테마코스
- 자전거 보관대
- 자전거 공기주입기
- 자전거 민원
- 자전거 기증
- 자전거 임대 신청
- 자전거 교실
- 정책사업 소개
- 커뮤니티 운영</td>
</tr>
<tr>
<td>대전광역시</td>
<td></td>
<td>- 자전기 이동수리반
- 자전거 보험 안내
- 방치 자전기 수거
- 업소와 연계한 자전거 방문객 할인
- 자전기 이용 편의시설 현황
- 자전기 도로안내
- 공공자전거(타슈) 이용 안내
- 자전기 정책
- 자전기 동호회 소개
- 사민 의견 수렴</td>
</tr>
<tr>
<td>경기도 부천시</td>
<td></td>
<td>- 자전기 문화센터 안내
- 자전기 안전교육
- 자전기 타기 교육
- 어린이 자전기 운전면허시험
- 자전기 동호회
- 자전기로 안내
- 테마 자전거 노선 안내
- 문화센터 행사 안내
- 자전기 이용 편의시설 안내
- 대여 자전기 운영</td>
</tr>
</tbody>
</table>

나. 안내 책자(자전거 지도 등)

자전거 이용자가 지도 등 코스 정보를 가지고 자전거를 이용할 수 있도록 소책자 형태로 발간되고 있으며, 지역의 자전기도로 정보, 일정별 여행
코스 등의 정보를 담고 있다. 지역 이용자들 위한 자료보다는 관광홍보용의 자료로 많이 사용되고 있다.

<그림 2-1> 지도 등의 안내 책자(제주도)

다. 안내 표지

자전거 이용자가 많은 지역에 설치하는 안내 표지에는 방향별 이동거리 및 전체적인 노선에 대한 정보를 담고 이용자의 위치를 중심으로 주변 지역 정보를 제공해 준다. 한강 자전거 전용도로 등 자전거도로 구축이 잘 되어 있고 이용자가 많은 지역에서 많이 활용되고 있다.

<그림 2-2> 자전거 안내 표지(서울 한강변)
라. GPS Tracking Data

우리나라의 경우 레저용 자전거 통행이 발달하여 GPS를 이용한 경로 정보가 흔히 공유되고 있다. GPS Tracking Data는 어떤 경로를 다녀온 사람이 자신의 경로에 대한 자료를 올리면 자료를 공유하는 형태로 이용되고 있으며, 자신의 GPS에 저장된 경로를 보며 주행할 수 있다. 자전거 이동 경로뿐만 아니라 고도 자료가 포함되어 있기 때문에 레저 통행 이용자들에게는 유용한 자료로 활용되고 있다.

<그림 2-3> GPS Tracking Data
제2절 자전거 교통정보 제공방식의 한계 및 개선방향

1. 자전거 교통정보 제공방식의 문제점

자전거는 외부 환경에 영향을 많이 받는 교통수단으로 날씨, 고장 등 돌발상황에 대처하기 위해서는 현장에서 필요한 정보의 제공이 필요하다. 그러나 자전거에 대한 정보 제공 웹페이지는 다양한 정보를 제공할 수 있지만 자전거를 이용하는 시점보다 이전에 정보를 습득해야 하는 문제점이 있으며, 안내 책자의 경우 휴대가 가능하나 실시간 정보가 아니며 정보의 양도 적은 단점이 있다. 안내 표지의 경우는 한정된 지역에서 한정된 정보만 표출이 가능하다는 한계가 있으며, GPS Tracking Data는 이동 중에 자신의 위치와 경로를 확인할 수 있으나 기존에 저장된 자료만 활용이 가능하고 통합 관리하는 곳이 없어 자료의 신뢰도 및 업데이트에 한계가 있다.

<표 2-3> 자전거 교통정보 제공방식별 문제점

<table>
<thead>
<tr>
<th>자전거 교통정보 제공방식</th>
<th>문제점</th>
</tr>
</thead>
<tbody>
<tr>
<td>웹페이지</td>
<td>· 자전거를 타기 이전 정보를 미리 습득해야 하는 불편 · 실시간으로 변화하는 외부 환경에 대응 불가 · 이용자의 측면이 아닌 주로 공급자의 입장에서 정보 제공 · 전국을 아우르는 통합된 정보 제공 웹페이지가 없어 장거리 휴거나 란지 통행인 경우 특정 지역의 정보만 제공</td>
</tr>
<tr>
<td>안내 책자</td>
<td>· 휴대가 가능하나 한정된 정보만 제공 · 외부 환경에 대응 불가 · 정보량의 한계</td>
</tr>
<tr>
<td>안내 표지</td>
<td>· 방향, 거리 등 한정된 정보만 제공 가능 · 일정한 지역에서도 확인 가능 · 정보 제공 지점 부족 · 경로 전체 또는 주변 지역에 대한 정보 부족</td>
</tr>
<tr>
<td>GPS Tracking Data</td>
<td>· 체계적으로 정리된 자료는 없음 · 자료의 업데이트 확인 불가 · 이용자의 특성에 따라 경로의 난이도 차이가 존재</td>
</tr>
</tbody>
</table>
2. 이용자 위치기반 정보의 필요성

자전거 이용자는 기후환경, 도로환경, 신체조건에 따라 매우 민감하게 반응하는 특징을 가지고 있다. 웹페이지, 안내 책자 등을 통한 정보 제공은 자전거를 이용하고 있는 현장의 이용자에게 유용한 정보를 제공하기에는 한계를 가지고 있다. 따라서 자전거 이용자의 위치를 파악하고 이에 적합한 정보를 제공하는 것이 필요하다.

공공자전거는 자전거 이용 활성화 및 자가용 승용차 대체의 교통수단으로 주목받고 있으나 현재 웹페이지를 통하여 공공자전거 사용 가능 여부 등의 정보를 제공하고 있어 이용자이 정보를 확인하고 공공자전거 스테이션까지 도착하기에는 시간이가 존재한다. 이에 따라 이용자이 확인한 내용과 달리 스테이션에 대여 가능한 자전거가 없거나 자전거를 반납할 수 없는 등의 한계를 가지고 있다.

이용자 위치기반 정보란 자전거를 이용하고 있는 이용자의 위치(위도, 경도)를 기준으로 자전거도로, 공공자전거 정보, 수리 및 편의시설 등 주변 지역의 정보를 제공함으로써 이용자이 쉽게 정보에 다가갈 수 있도록 해 준다.

<표 2-4> 이용자 위치기반 정보의 분류

<table>
<thead>
<tr>
<th>일반 정보</th>
<th>이용자 위치기반 정보</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>자전거 관련 뉴스</td>
</tr>
<tr>
<td></td>
<td>자전거 도로시설</td>
</tr>
<tr>
<td></td>
<td>자전거 상식</td>
</tr>
<tr>
<td></td>
<td>자전거 관련 정책</td>
</tr>
<tr>
<td></td>
<td>공공자전거 대여시설 위치</td>
</tr>
<tr>
<td></td>
<td>자전거도로</td>
</tr>
<tr>
<td></td>
<td>자전거 탐방 코스</td>
</tr>
<tr>
<td></td>
<td>자전기도로, 높우</td>
</tr>
<tr>
<td></td>
<td>날씨 정보</td>
</tr>
<tr>
<td></td>
<td>공공자전거 대여 현황</td>
</tr>
<tr>
<td></td>
<td>수리시설 위치</td>
</tr>
<tr>
<td></td>
<td>편의시설 위치</td>
</tr>
<tr>
<td></td>
<td>보관시설 위치</td>
</tr>
<tr>
<td></td>
<td>대중교통 환승 탐승 지점</td>
</tr>
<tr>
<td></td>
<td>공공자전거 이용 정보</td>
</tr>
</tbody>
</table>
3. 자전거 교통정보 제공방식 개선방향

자전거 이용자에게 가장 필요한 정보는 이용자 중심의 위치기반의 정보로서 자전거도로, 보관시설, 자전거 편의시설, 대중교통 환승시설, 공공자전거 등의 실시간 이용 정보가 필요하다. 이를 위해서는 이용자의 위치를 확인하기 위하여 이용자의 위도 및 경도를 확인할 수 있는 GPS가 필요하다.

현재 보급과 활용이 급증하고 있는 스마트폰은 기기 내 GPS 및 지자기 센서를 가지고 있기 때문에 위도, 경도, 고도 및 방향 정보를 기초로 하여 이용자가 위치기반 정보를 받을 수 있도록 되어 있다. 현재의 웹, 책자, 표지의 정보 제공 체계에서 빼어나자전거 이용자에 필요한 정보를 쉽게 획득할 수 있는 위치기반 정보로의 자전거 이용 정보의 전환이 필요한데, 스마트폰은 이러한 문제를 해결할 수 있는 장점이 있다. 이에 따라 제3장에서는 자전거 교통정보의 효율적 제공을 위한 스마트폰의 활용 가능성을 살펴보았으며, 제4장에서는 스마트폰을 활용한 자전거도로 정보, 공공자전거 이용정보, 자전거 편의시설 정보 제공 방안을 제안하였다. 이와 함께 스마트폰 애플리케이션인 ‘Now Biking’의 개발 및 활용방법에 대해 제시하였다.
제3장 자전거 교통정보와 스마트폰

제1절 스마트폰의 정의 및 현황

1. 스마트폰의 정의

소득 수준 증가에 따라 국내에서 이동통신 기기 사용은 갈수록 높아졌고 이에 따라 스마트폰이 출시되었다. 그러나 스마트폰은 다루기 어렵다는 인식과 높은 데이터 통신비용으로 인하여 활성화되지 못하고 비즈니스 혹은 마니아층에서 일부 활용되는 것이 전부였다. 그러나 2009년 말 미국 애플사의 '아이폰' 국내 출시를 계기로 스마트폰에 대한 관심이 폭발적으로 늘어났다. 현재는 가히 '스마트폰 혁명'이라고 불릴 만큼 스마트폰이 일상에 많은 영향을 미치고 있는 것으로 평가되고 있다.

스마트폰이라는 단어는 보편화되었지만 그에 대한 정의는 명확하지 않다. 왜냐하면 스마트폰의 종류가 다양하고 차이점을 구분하기가 모호하여 어느 요소까지 갖춰야 스마트폰으로 볼 것인가에 대한 의견이 분분하기 때문이 다. 따라서 본 연구에서는 교통 측면에서의 고려해야 하는 중요한 기능을 중심으로 스마트폰을 정의하였는데, 위치기반 정보를 활용할 수 있고 개방형 OS(Operating System)를 탑재하여 새로운 프로그램의 설치 및 실행이 가능한 휴대폰으로 정의하였다.
2. 스마트폰의 특징

스마트폰과 일반 휴대폰의 가장 큰 차이점은 ‘개방성’이다. 개방성이라는 휴대폰에 기본적으로 탑재되어 있는 프로그램 이외에 별도의 프로그램을 제작하여 휴대폰에 설치할 수 있다는 것이다. 즉 저장 용량이 허용되는 한도 내에서 무한대로 확장할 수 있다. 스마트폰이 이러한 개방성을 가지게 된 이유는 개방형 OS를 사용하였기 때문이다. PC에 윈도우, 리눅스, 맥 OS 등 당 OS가 있듯이 스마트폰에는 iPhone OS, 안드로이드, 삼비안, 윈도우 모바일 등의 OS가 있다. 스마트폰은 그 크기가 작아 PC처럼 고성능으로 제작하기에는 한계가 있지만 기술 수준이 높아짐에 따라 곧 비슷해질 것이라 기대되고 있다.

스마트폰에는 응용프로그램을 실행하기 위한 CPU 및 메모리가 있고, 애플리케이션과 이용자 데이터를 저장할 수 있는 저장 공간이 있다. 인터넷, 전화 등은 스마트폰 응용분야의 하나라 할 수 있다. 일반 휴대폰과 스마트폰을 비교하면 <표 3-1>과 같다.

일반 휴대폰에 비하여 스마트폰은 장점이 많은 휴대폰임에 틀림없다. 스마트폰의 단점으로 생각되는 복잡한 인터페이스도 ‘아이폰’의 등장으로 많이 희석되었기 때문에 스마트폰은 발전 가능성이 더욱 크다고 할 수 있다.

<표 3-1> 일반 휴대폰과 스마트폰 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>일반 휴대폰</th>
<th>스마트폰</th>
</tr>
</thead>
<tbody>
<tr>
<td>장점</td>
<td>· 휴대 간편 · 쉬운 사용법 · 효율적인 배터리 사용량</td>
<td>· 강력한 멀티미디어 기능 · PC와의 동기화 · 다양한 애플리케이션 · 편리한 휴대성 · 효율적인 배터리 사용량</td>
</tr>
<tr>
<td>단점</td>
<td>· 제한적인 S/W 설치 · 애플리케이션 확장성 미비 · 오리엔 지원의 어려움</td>
<td>· 복잡한 인터페이스</td>
</tr>
</tbody>
</table>
5. 스마트폰 보급 추이

스마트폰은 예전에도 존재하였으나 국내 이용자들의 관심이 급증하게 된 계기는 ‘아이폰’의 출시였다. 2009년 11월 미국 애플사의 국내 ‘아이폰’ 출시 이후 스마트폰에 대한 관심이 급속도로 증가하였고, 각 휴대폰 제조사들은 앞다투어 스마트폰을 출시하였다. 국내 휴대폰 시장에서 스마트폰이 차지하는 시장점유율은 <그림 3-1>과 <그림 3-2>와 같이 가파르게 상승하고 있으며 이는 당분간 계속될 것으로 전망되고 있다.

2009년 1분기부터 2010년 2분기까지의 스마트폰 시장점유율을 보면 2009년 4분기부터 크게 증가하였다. 2009년 4분기에 이루어진 큰 폭의 증가는 ‘아이폰’의 국내 출시에 기인한 것이며, 2010년 2분기까지의 가파른 증가는 ‘아이폰’과 더불어 큰 비중을 차지하고 있는 안드로이드폰이 많이 출시되었기 때문이다. 이에 따라 불과 2분기 만에 시장점유율은 두 배인 16.6%까지 치솟았다.

![행사율 and 판매량 그래프](자료: ATLAS Mobile Index, 로아그룹, 2010.)

국내 스마트폰 판매량을 보면 2007년 3만 대에 불과하였으나 2009년 73만 대까지 급속히 증가하였으며, 이와 같은 추세를 유지한다면 2010년에는
500만 대를 돌파할 것으로 예측되고 있다.

스마트폰 보급의 확대로 인해 실시간화, 위치기반화가 가능하기 때문에 교통정보 분야에 큰 영향을 미칠 것으로 판단된다. 본 연구에서는 자전거 교통정보 측면에서 스마트폰의 활용 가능성을 검토해 보았다.

제2절 자전거 교통정보와 스마트폰

1. 자전거 교통정보 제공을 위한 스마트폰 활용 가능성

교통정보 측면에서 보면 기존의 교통정보 제공방식은 교통수단을 운영하거나 정책을 수립한 공급자 측면에서 필요 정보를 선정하고 VMS, TV, 라디오 등을 통해 이용자들에게 제공하는 방식이었다. 그러나 이제는 교통수단을 이용하는 이용자가 필요한 정보를 능동적으로 활용하는 방식으로 변화하고 있다. 이에 따라 실시간 정보를 언제 어디서든 제공받을 수 있는 환경 구축이 요구된다. 스마트폰은 이러한 조건을 충족시킬 수 있는 가장 효율적인 수단이다.

![그래픽](그림3-3) 교통정보 제공방식의 변화
자전거 이용자의 스마트폰 활용성은 크며 특히 다른 교통수단에 비해 스마트폰의 활용성이 더욱 크다고 할 수 있다. 왜냐하면 스마트폰의 특성이 자전거 이용의 단점을 보완할 수 있기 때문이다. 스마트폰을 활용하는 경우 자전거 이용의 장점은 살펴보면 다음과 같다.

첫째, 자전거는 인간의 힘(human power)으로 움직이는 수단으로 무게를 줄이는 것이 매우 중요하다. 자전거 경량화를 위해 점단 소재를 활용하는 것이 좋은 예라 할 수 있다. 이러한 특성으로 인해 자전거에 무게가 증가하는 장비를 부가적으로 설치하는 것은 자전거 이용을 불편하게 한다. 반면 대부분의 자전거 이용자들이 휴대폰을 소지하고 있고, 무게가 많이 나가지 않기 때문에 이러한 문제를 해결할 수 있다. 또한 자동차와는 달리 자전거는 자체적인 전원 공급이 어렵기 때문에 전원이 필요한 장치를 설치하는 데 한계가 있다는 것도 스마트폰 활용의 장점이라 할 수 있다.

둘째, 자전거 이용 시 철도, 트램, 버스 등의 대중교통과 연계하여 사용하는 경우가 많기 때문에 이용자 입장에서는 대중교통 정보가 중요하다. 네덜란드의 경우 철도를 이용하는 승객 중 39%가 자전거를 이용하여 역까지 접근하며, 몇몇 역의 경우 그 비율이 60%에 이르고 있다. 스마트폰은 애플리케이션을 통해 자전거와 연계되는 대중교통 정보의 제공이 가능하다.

셋째, 최근 적극적인 자전거 이용 활성화 정책에 따라 여러 지역에서 자전거도로가 구축되고 자전거 보관시설이 설치되고 있다. 이에 따라 자전거 이용자들은 편리하고 안전한 자전거도로를 이용하기 위한 가장 최근의 정보가 필요하며, 스마트폰은 이를 만족시킬 수 있는 효율적인 수단이다. 또한 자전거 관련 표지판 등의 제대로 정비되어 있지 않은 경우에도 정보제공을 통해 보완이 가능하다.

넷째, 자전거는 타 교통수단에 비해 상대적으로 ‘이동보다는 ‘타는 것’ 자체를 목적으로 하는 경우가 많다. 이와 같은 특성으로 인해 최단거리 또는 최소통행시간이라는 경로 선택의 요인보다는 경관 등의 환경적 요소와 주변 이용 시설 등의 특성 등이 자전거 이용의 중요한 원인으로 작용하게
본다. 이들사례, 자전거 노선정보(tracking data), 주변의 역사 및 문화정보 등을 자전거 이용자들 간 공유하는 것 등은 좋은 사례 할 수 있다. 아울러 스마트폰의 애플리케이션을 활용하여 자전거를 이용하는 동안의 운동효과를 관측하는 것도 가능하다.

다섯째, 자전거는 자동차에 비해 상대적으로 간단한 구조를 갖고 있기 때문에 고장이 나도 자전거 이용자가 간단한 수리를 직접 할 수 있다. 자전거 이용 중 문제가 발생하면 자전거에 대한 전문적 지식을 사전에 습득하고 있지 않더라도 스마트폰을 통해 응급처치를 할 수 있다. 또한 자동차와 같은 보험 체계가 발달되어 있지 않기 때문에 가까운 자전거 수리점을 찾는 데도 스마트폰이 유용하게 사용될 수 있다.

<표 3-2> 스마트폰 활용을 고려한 자동차와 자전거의 특성 비교

<table>
<thead>
<tr>
<th>자동차</th>
<th>구분</th>
<th>자전거</th>
</tr>
</thead>
<tbody>
<tr>
<td>중량에 큰 영향이 없음</td>
<td>중량</td>
<td>중량 감소가 매우 중요함</td>
</tr>
<tr>
<td>자체 전원장치가 있음</td>
<td>전원</td>
<td>자체 전원장치가 없음</td>
</tr>
<tr>
<td>타 수단과의 연계가 상대적으로 적음</td>
<td>타 수단과의 연계가 매우 중요함</td>
<td>다른 교통수단과의 연계가 매우 중요함</td>
</tr>
<tr>
<td>도로 및 안전시설, 운영체제가 상대적으로 잘 정비되어 있음</td>
<td>이용시설</td>
<td>자전거도로 및 보관시설의 확충 등으로 이용 환경이 변화하고 있음</td>
</tr>
<tr>
<td>도로를 이용</td>
<td>경로</td>
<td>도로뿐만 아니라 산악, 하천변 등 다양한 경로 가능</td>
</tr>
<tr>
<td>오프라인과 온라인에서 정보가 제공되고 있음</td>
<td>정보제공</td>
<td>자전거 관련 표지판을 포함, 관련 정보 제공이 충분하지 않음</td>
</tr>
<tr>
<td>대부분 ‘이동’이 주요 목적임</td>
<td>목적</td>
<td>‘이동’과 함께 ‘타는 것’ 자체가 목적인 경우도 많음</td>
</tr>
<tr>
<td>전문자식이 필요하지만 기술자가 수행(고장 및 사고처리체계 구축)</td>
<td>고장 시 처리</td>
<td>간단한 정비는 이용자가 수행</td>
</tr>
</tbody>
</table>

2. 자전거 관련 애플리케이션 현황

앞에서 기술한 바와 같이 스마트폰의 보급 확대와 스마트폰의 개방성으로
로 인하여 교통 측면에서의 활용도가 늘어날 것이라고 예측된다. 본 연구에서는 자전거 교통정보 측면에서 접근하였으므로 자전거 관련 애플리케이션의 현황을 살펴보았다.

애플리케이션은 스마트폰의 OS에 따라 다를 뿐 2010년 6월 현재 가장 많은 애플리케이션을 보유하고 있는 애플사의 ‘아이폰’ 애플리케이션을 살펴보았다. ‘아이폰’ 애플리케이션 중 ‘bike’로 검색하면 총 333개의 애플리케이션이 검색되는데, 오토바이와 관련된 것을 제외하면 약 250여 개가 제공되고 있다. 많은 애플리케이션이 제공되고 있지만, 기능 및 가격 등에 차이가 있을 뿐 유사한 내용의 애플리케이션이 많이 존재한다. 유사한 기능이라도 조금씩 새롭고 편리한 애플리케이션이 등장하고 활용된다는 것, 이것이 스마트폰의 최대 장점이기도 하다.

![아이폰 자전거 관련 애플리케이션 검색 화면](image)

<그림 3-4> ‘아이폰’용 자전거 관련 애플리케이션 검색 화면

가장 활발하게 개발되어 활용되고 있는 분야는 Healthcare & Fitness이다. 이는 자전거의 가장 큰 장점 중 하나인 건강 증진 기능의 특성을 반영한 애플리케이션이라 할 수 있다. ‘BikeMate’, ‘RunKeeper’, ‘MapMyRide’ 등의 애플리케이션이 있으며 실시간 속도, 방향 표시, 운동시간, 운동거리, 최고속도 기록, 평균속도 기록, 일별 운동데이터 기록, BMI 3) 지수를 이용한 비만도 측정 등의 기능을 포함하고 있다.

Utilities 분야의 애플리케이션은 자전거의 후미등을 대신하는 기능 외에 글씨를 LED처럼 표시하는 기능 등 주로 디스플레이와 빛을 이용한 애플리케이션이 주를 이루고 있다. Travel 분야에서는 ‘TEUTO_Navigator’와 같이 독일의 토이토부르거 숲을 여행할 수 있게 루트와 거리, 소요시간 등을 제공하는 애플리케이션 등이 있어 여행을 즐겁게 해주고 있다. Education 분야에서는 ‘Mike and the Bike’와 같이 어린이를 위한 자전거 이야기를 담은 그림책 애플리케이션이 있어 아이들의 홍미를 유발하고 교육도 시키고 있다.

지금까지의 자전거 관련 애플리케이션은 교통정보 제공측면에서 볼 때 부족한 것으로 나타났다. 이와 같은 배경 하에 다음 장에서는 자전거 교통정보를 자전거도로 정보, 공공자전거 이용정보, 자전거 편의시설 정보의 3가지로 구분하여 스마트폰을 활용한 각각의 정보제공 방안을 제시하였다.

3) 체질량 지수로 Body Mass Index의 약자임. 신장과 체중을 이용하여 지방의 양을 추정하는 공식으로 체지방률 및 건강위험도를 반영하는 지표임
<표 3-3> '아이폰'용 자전거 관련 애플리케이션 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>주요 기능</th>
<th>애플리케이션</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthcare & Fitness</td>
<td>라이딩 경로(노선, 속도, 고도) 기록 및 분석, 자전거 유지관리</td>
<td>BikeMate, RunKeeper, iTrainer 등</td>
</tr>
<tr>
<td></td>
<td>속도, 고도 등 라이딩 결과 분석 및 공유</td>
<td></td>
</tr>
<tr>
<td></td>
<td>실시간 속도, 방향 표시</td>
<td></td>
</tr>
<tr>
<td></td>
<td>운동시간 운동거리, 최고속도, 평균속도, 소모 칼로리 정보 표시 및 기록</td>
<td></td>
</tr>
<tr>
<td></td>
<td>비만도 측정(BMI 지수 이용)</td>
<td></td>
</tr>
<tr>
<td>Navigation</td>
<td>경로 저장 기리 표시</td>
<td>bikeTrail, BikeFixTo, Bike taXi, Call a Bike 등</td>
</tr>
<tr>
<td></td>
<td>주행시간 표시</td>
<td></td>
</tr>
<tr>
<td></td>
<td>가까운 자전거 수리점 알림</td>
<td></td>
</tr>
<tr>
<td></td>
<td>수리점 정보 알림</td>
<td></td>
</tr>
<tr>
<td>Sports</td>
<td>자전거 수리 관련 잡지</td>
<td>Fixing bike flats, TheBike 등</td>
</tr>
<tr>
<td></td>
<td>자전거 전문잡지</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>다양한 라이트(light) 기능</td>
<td>iBikeLight, Bicycle Safety Light, LED Clock plus Free Torch Light Flash 등</td>
</tr>
<tr>
<td></td>
<td>글자 표시 기능</td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td>여행코스 소개 및 안내</td>
<td>TEUTO_Navigator, DuVine 등</td>
</tr>
<tr>
<td></td>
<td>거리, 소요시간, 경로 표시</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>자전거를 소재로 한 이야기</td>
<td>Mike and the Bike 등</td>
</tr>
<tr>
<td></td>
<td>그림책</td>
<td></td>
</tr>
</tbody>
</table>
제4장 자전거 교통정보 제공을 위한 스마트폰 활용방안

제1절 스마트폰을 이용한 자전거 교통정보체계 구축방안

1. 자전거도로 정보

가. 자전거도로 정보 내용

자전거도로는 자전거 전용도로, 자전거·보행자 겸용도로, 자전거 전용차로로 구분된다. 자전거 전용도로는 자전거만이 통행할 수 있도록 분리대, 연석 등 기타 이와 유사한 시설물에 의하여 차도 및 보도와 구분하여 설치된 도로로, 자전거 이용자가 타 교통류와 상충 없이 이용이 가능하다.

자전거 보행자 겸용도로는 자전거 외에 보행자도 통행할 수 있도록 한 분리 시설물로 차도와 구분하여 별도로 설치된 자전거도로를 말하며, 우리 나라의 80% 자전거도로가 이와 같은 형태로 되어 있다. 하지만 낮은 보행자와의 상충으로 안전상의 문제가 있어 향후 자전거도로 건설에서는 이 겸용 도로를 지양할 계획이다.

자전거 전용차로는 다른 차와 도로를 공유하면서 안전표지나 노면표지
자전거통행구간을 구분한 차로이다.
자전거도로의 이용 정보는 이용자가 자신이 원하는 종류의 자전거도로를 이용하여 목적지까지 이동할 수 있도록 제공되어야 하며, 노선 등의 관련 정보가 제공되어야 한다. 또한 줄인, 줄아웃 기능을 통하여 쉽게 확인해 볼 수 있도록 전자지도상에 구축되어야 한다.
자전거도로는 현재 연계가 되어 있는 곳이 많지 않아 자전거 이용자가 많이 사용하는 도로를 함께 지도에 표시해 주어 이용자가 선택적으로 사용할 수 있도록 해야 한다.
자전거도로 경로 검색도 가능해 경로를 모르는 이용자도 경로를 쉽게 찾을 수 있도록 구현할 필요가 있다. 온라인 서비스에 경로 검색 알고리즘을 구현하고 스마트폰은 표출 기능만을 하도록 함으로써 프로그램 구현에 스마트폰의 운영시스템이 무리가 가지 않도록 해야 한다.

출발지에서 목적지까지의 경로를 보여주는 경우에는 경로 선정에 응선 기능을 두어 이용자가 자전거도로, 평지, 단거리 중 하나를 우선적으로 선택할 수 있도록 해야 한다. 또한 증강현실을 이용하여 이용자의 진행에 따라 방향과 남은 거리를 알려주는 것도 좋은 방안이다.

<표 4-1> 자전거 경로 검색 기능 구현 시 고려사항

<table>
<thead>
<tr>
<th>고려사항</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>자전거도로 우선 찾기</td>
<td>·자전거 전용도로, 전용차로를 경유하는 노선</td>
</tr>
<tr>
<td>최단거리 노선 찾기</td>
<td>·가장 빠른 시간 안에 목적지까지 도달할 수 있도록 자전거 경로 제공</td>
</tr>
<tr>
<td>최소 고도를 이용한 경로 찾기</td>
<td>·인체 에너지를 이용하는 특성을 고려하여 이용자가 고도차가 적은 경로를 선택할 수 있도록 정보제공</td>
</tr>
<tr>
<td>이용자 선호 노선 고려한 경로 찾기</td>
<td>·가장 많은 사람이 이용하는 경로 제공</td>
</tr>
</tbody>
</table>
나. 정보 수집 및 관리방안

자전거도로 정보는 전국을 대상으로 구축되기 때문에 통일되고 체계적인 정보 수집 및 관리가 매우 중요하다. 각 지자체의 유형별 자전거도로 및 테마 자전거 노선, 동호회의 선호 노선 등 원시자료를 활용하여 이용자가 쉽게 원하는 경로를 검색할 수 있도록 해야 한다.

<표 4-2> 자전거도로 정보 자료

<table>
<thead>
<tr>
<th>원시자료</th>
<th>정보 기공</th>
<th>스마트폰 제공</th>
</tr>
</thead>
<tbody>
<tr>
<td>도로 현황</td>
<td>길 찾기(최단거리, 자전거도로 우선, 경사 최소화 등 옵션 제공)</td>
<td>스마트폰의 위치기반을 이용한 선택적 정보 수용</td>
</tr>
<tr>
<td>자전거도로 현황</td>
<td></td>
<td></td>
</tr>
<tr>
<td>역사/유적지 현황</td>
<td></td>
<td></td>
</tr>
<tr>
<td>동호회 선호 노선</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
이와 함께 이용자 업데이트 환경 구현이 필요하다. 이용자가 이용한 경로는 동의하여 경로 업데이트에 활용할 수 있도록 트랙 데이터(track data)를 홈 페이지에 업로드 가능하도록 구현하고, 이렇게 수집된 데이터는 향후 경로 검색 시 이용자 선호도 노선 선정 알고리즘에 적용하여 DB 자료로 활용한다.

자전거 이용자는 자전거로 중 문제 구간(파손, 단절, 위험 구간 등)의 내용을 지오태깅(geotagging)\(^4\)된 사진을 업로드하여 다른 이용자에게 주의를 줄 수 있도록 하고, 해당 지역 정부기관에 자전거도로를 보수할 수 있도록 정보를 제공한다.

\(^4\) 지오태깅(geotagging)이란 위치 정보(위도, 경도)를 사진 등에 삽입하는 것으로 사진 찍은 위치 등을 쉽게 확인할 수 있게 만드는 것을 말함
2. 공공자전거 이용 정보

가. 공공자전거 운영 및 이용 현황

각 지자체에서는 자전거 이용 활성화를 위하여 공공자전거 도입을 시작하고 있으며 2010년 현재 창원시, 대전광역시, 고양시 등에서 운영되고 있다. 창원시의 경우 2008년 10월 ‘누비자’ 공공자전거 사업을 시작하였다. 스테이션 20개소와 자전거 430대로 시작하여 현재 150개 스테이션과 약 3,000여 대의 자전거를 갖추고 있다. 43,000여 명의 회원이 이용하고 있으며 회전율은 약 4회/일이다.

대전광역시는 2009년 10월에 공공자전거 ‘타슈’를 개통하였다. 20개소의 스테이션과 200대의 자전거로 시작하였으며, 향후 공공자전거를 5,000대로 확대할 계획이다. 대전광역시청 주변만을 대상으로 하고 있지만 하루 회전율이 4회에 달할 정도로 인기가 높다.
경기도 고양시는 2010년 3월 'FIFTEEN'을 개통하였다. 70개소의 스테이션과 1,600대의 자전거를 운영 중이며 향후 스테이션 125개소, 자전거 3,000대로 확대, 운영할 계획이다.
나. 실시간 공공자전거 이용 정보 제공방안

공공자전거 이용 정보는 각 지자체 홈페이지에 명시되어 있으며 스테이션의 단말기를 통해서도 제공되고 있다. 하지만 스테이션으로 접근을 원하는 사람, 공공자전거에 탑승하여 이동 중인 사람, 해당 지역에 거주하지 않아 상황을 모르는 사람은 이용할 수 없기 때문에 이동하면서 활용할 수 있는 스마트폰을 통하여 정보를 제공함으로써 공공자전거 이용에 대한 정보 제공의 한계를 극복할 수 있다.

3. 자전거 편의시설 정보

가. 자전거 편의시설 정보

자전거는 레저·스포츠 활동으로 이용 중 영양분 섭취, 수분 섭취가 필요하며 퍼킹 등 잦은 고장이 발생하기 때문에 자전거 이용자는 편의시설에 대한 위치 정보가 필요하다. 또한 출퇴근 등 생활형으로 자전거를 이용하는 경우는 주변에 주차가 가능한 곳, 환승이 가능한 곳의 정보가 필요하게 된다.

스마트폰으로 제공해야 하는 편의시설 정보는 이용자 주변의 가까운 수리시설 및 휴게시설, 주차시설 등의 정보, 편의시설까지의 거리, 운영시간, 연락처 등의 정보, 대중교통 환승을 위한 버스터미널, 기차역 등의 정보가 있다.

나. 편의시설 정보 제공방안

방향별 자전거 편의시설 정보를 제공해야 한다. 가까운 편의시설의 위치가 먼저 나타나도록 해야 하며, 이용자가 거리를 설정하여 가까운 곳을 찾을 수 있도록 해야 한다. 아이콘을 클릭 시 편의시설 위치 및 연락 가능 전
화번호, 이용자로부터의 거리 정보 등을 제공할 필요가 있으며, 뿐만 아니라 스마트폰을 아래로 비추었을 경우 주변 지역의 모든 편의시설 정보를 한눈에 볼 수 있도록 구현하는 것이 바람직하다. 지하철역 등 환승시설에 대한 정보를 제공하여 이용자가 가까운 역의 위치를 쉽게 찾고 환승할 수 있도록 해야 한다.

<그림 4-6> 편의시설 정보 제공 애플리케이션(예시)

제2절 자전거 교통정보 제공 애플리케이션(Now Biking) 개발

1. 위치정보 기반의 자전거 교통정보 애플리케이션 개발전략

자전거는 생체에너지로 움직이기 때문에 타 교통수단보다도 위치기반 정보가 더욱 중요하다. 정보가 부정확하거나 모호한 경우 되돌아와야 하며, 이 때 많은 체력이 소모되기 때문이다.

본 연구에서는 이러한 정보를 추구하고 더 나아가서 자전거 이용 활성화에 긍정적인 영향을 미치고 있는 공공자전거가 설치된 지역을 대상으로 하여 애플리케이션인 ‘Now Biking’을 개발하였다. 대상 지역은 스마트폰 보급
률이 높은 수도권 지역, 규모가 큰 도시를 우선으로 하여 선정하였다. 이용 대상과 관련해서는 스마트폰 이용자 중 자전거를 타야 하고, 그중에서도 공공자전거를 이용하는 사람만을 대상으로 하기 때문에 범위가 좁아지는 단점이 있으므로, 가능한 이용 대상을 넓히고자 현재 가장 많은 애플리케이션 이용자를 확보한 ‘아이폰’용 애플리케이션으로 ‘Now Biking’을 먼저 개발하였다.

본 연구에서 개발하는 자전거 애플리케이션은 이용자의 위치정보를 기반으로 제공되며, 제공되는 정보는 다음과 같다.

첫째, 공공자전거 이용에 관련된 정보를 제공한다. 공공자전거를 대여하거나 반납하는 공공자전거 스테이션은 건물 외부에 위치하고 있기 때문에 이용자 입장에서 실시간으로 가장 가까운 자전거 스테이션에서의 대여 가능한 자전거 대수 및 반납 가능한 자전거 거치대의 수를 파악하는 것이 매우 중요하다. 본 연구에서 개발된 ‘Now Biking’은 이를 지원으로 표현함과 동시에 증강현실(AR)을 적용하였다.

둘째, 자전거 수리/판매점 위치 및 연락처 정보를 제공한다. 이 정보 또한 증강현실을 이용하여 정보가 제공되며 자전거 수리/판매점(one-click) 전화 기능 등이 포함된다.

셋째, 지하철 출구 정보를 제공한다. 자전거는 지하철역까지 접근하는 교통수단으로 매우 유용하게 활용될 수 있다. 네덜란드, 독일, 일본 등 자전거 선진국은 버스 및 지하철의 접근 교통수단으로 자전거를 활용하고 있다. 따라서 자전거 이용자들에게 지하철역 위치를 제공함으로써 연계 편리성을 높일 수 있다.

넷째, 자전거 전용도로에 대한 정보를 제공한다. 빠르고 안전한 자전거 전용도로에 대한 정보를 제공함으로써 자전거 이용자의 편의를 향상시킬 수 있다. 현재 개발 중인 애플리케이션에는 자전거 전용도로만 포함되지만 향후 모든 자전거도로에 대한 정보가 제공될 필요가 있다.

자전거 교통정보 애플리케이션은 현재 공공자전거가 활발히 운영되고 있
제4장 자전거 교통정보 제공을 위한 스마트폰 활용방안

는 대전광역시와 경기도 고양시를 대상으로 하였다. 대전은 인구 100만 명 이상의 광역시로 현재 ‘타슈’라는 공공자전거를 운영하고 있으며, 지하철이 운행되고 있는 도시이다. 고양시도 마찬가지로 ‘FIFTEEN’이라는 공공자전거를 운영하고 있으며, 지하철이 운행되고 있다. 이 같은 조건이 증강현실을 이용하는 스마트폰 활용에 부합하기 때문에 두 도시가 대상으로 선정되었다. 단, 자료의 한계로 자전거 전용도로 및 자전거 판매/수리점에 대한 정보는 대전광역시만을 대상으로 하였다.

<표 4-3> 자전거 교통정보 제공 애플리케이션 ‘Now Biking’의 제공 정보

<table>
<thead>
<tr>
<th>구분</th>
<th>제공 정보</th>
</tr>
</thead>
</table>
| 공공자전거 실시간 정보 | · 증강현실을 이용한 공공자전거 거치소의 위치정보 제공(방향, 거리)
| | · 지도에 현재 위치와 공공자전거 거치소의 위치정보 제공(방향, 거리)
| | · 공공자전거 거치소의 실시간 이용 정보(대여 가능 대수, 반납 가능 대수) 제공
| | · 공공자전거 이용요금 등 관련 정보 제공 |
| 자전거 수리점 및 판매점 위치의 정보 | · 증강현실을 이용한 자전거 수리점 및 판매점의 위치정보 제공
| | · 지도에 현재 위치와 자전거 수리점 및 판매점의 위치정보 제공
| | · 자전거 수리/판매점 주소, 전화번호 정보 제공
| | · 자전거 수리/판매점 전화결합 기능 제공 |
| 지하철 출구 정보 | · 증강현실을 이용한 지하철 출입구 위치정보 제공
| | · 지도에 현재 위치와 지하철 출입구 위치정보 제공 |
| 자전거 도로 정보 | · 자전거 전용도로/자전거 전용차로를 지도에 표시 |
| 자전거 이용 관련 기관 연락처 | · 공공자전거 운영기관, 지하철 운영기관, 시청 및 한국교통연구원 연락처 등 제공 및 전화결합(‘one-click’) 기능 제공 |

2. 애플리케이션 개발을 위한 동록 절차

애플리케이션 개발을 위한 동록절차는 5단계로 나뉜다. 1단계에서는 개발자(developer) 동록이 이루어진다. 이때 개발자의 이름(영문), 기관의 경우 영문 사업자 등록증, 대표자 이름, 이메일 등의 서류가 필요하다. 2단계에서는
개발자 등록이 완료되기까지의 보완과정이 수행된다. 3단계에서는 애플리케이션 개발, 4단계에서는 개발한 애플리케이션의 업로드 신청이 이루어진다. 여기서 애플사의 심사를 거치게 되는데 약 일주일 정도가 소요된다. 마지막 5단계 서비스가 개시되면 앱스토어에 올라가게 되고 개발자는 이용자의 다운로드 횟수, 국가별 이용자 수 등의 정보를 얻을 수 있다.

![그림 4-7 애플리케이션 등록 절차](image)

3. Now Biking 개발에 적용된 기법

가. 증강현실

증강현실(AR, Augmented Reality)은 가상현실(VR, Virtual Reality)의 한 분야로 실제 환경에 가상 사물이나 정보를 합성하여 원래의 환경에 존재하는 사물처럼 보이도록 하는 기법이다. 증강현실은 현실세계의 기반 위에 가상의 사물을 합성하여 현실세계만으로는 얻기 어려운 부가적인 정보들을 보강해 제공할 수 있다. 완전한 가상 세계를 전제로 하는 가상현실과는 달리 현실세계의 환경 위에 가상의 대상을 결합시켜 현실의 효과를 더욱 증가시키는 것이다.

이러한 특징 때문에 단순히 게임과 같은 분야이외만 한정된 적용이 가능한

5) 웹사이트 ‘http://ko.wikipedia.org’의 증강현실 정의에서 인용함
기존 가상현실과 달리 다양한 현실 환경에 응용이 가능하다. 특히, 유비쿼터스 환경에 적합한 차세대 디스플레이 기술로 각광받고 있다. 유비쿼터스 컴퓨팅 환경에서는 증강현실을 통해 일상적인 사물과 장소가 정보처리와 정보 교환을 수행하게 된다. 유비쿼터스 컴퓨팅 환경에서 컴퓨팅 파워가 적용되는 ‘대상’(objects) 또는 ‘사물’(things)에는 기존 생활 설비, 나아가 일상적인 제품과 사물까지 포함된다. 이때 유비쿼터스 IT가 적용되는 대상이나 사물은 특정한 위치(또는 장소)에 고정되어 있는 것이든 지속적으로 움직이는 것이든 관계 없다.

현실세계를 가상세계로 보완해 주는 개념인 증강현실은 컴퓨터 그래픽으로 만들어진 가상 환경을 사용하지만 주역은 현실 환경이다. 컴퓨터 그래픽은 현실 환경에 필요한 정보를 추가적으로 제공하는 역할을 한다. 이용자가 보고 있는 실사 영상에 3차원 가상 영상을 겹치게(overlap) 함으로써 현실 환경과 가상 화면과의 구분이 모호해지도록 한다는 뜻이다.

가상현실 기술은 가상 환경에 이용자를 몰입하게 하여 실제 환경이 볼 수 없지만, 실제 환경과 가상의 객체가 혼합된 증강현실 기술은 이용자가 실제 환경을 볼 수 있게 하여 보다 나은 현실감과 부가정보를 제공한다. 예를 들어 스마트폰 카메라로 주변을 비추면 인근에 있는 상점의 위치, 전화 번호 등의 정보가 입체영상으로 표시된다.

주: ScanSearch 위치기반(좌), Heads Up Navigator(우)

<그림 4-8> 증강현실을 이용한 애플리케이션 사례
나. 위치기반 서비스

위치기반 서비스(LBS, Location-Based Service)는 무선 인터넷 이용자에게 이용자의 변경되는 위치에 따른 특정 정보를 제공하는 무선 콘텐츠 서비스들을 가리킨다.6)

LBS의 주요 장점은 무선 인터넷 이용자가 위치를 여러 곳으로 이동하면서도 직접 주소나 지역 구분자를 입력하지 않아도 된다는 점이며, GPS 측위 기술은 이를 가능하게 하여 무선 인터넷 서비스 접근을 용이하게 해주는 주요 요소기술 중 하나이다. PC 기반의 유선 인터넷 서비스 역시 무선 인터넷 영역으로 확장을 계속하면서 위치기반 서비스 기능과의 융합(convergence) 요구에 직면하고 있다.

위치기반 서비스는 이용자 위치를 기반으로 주변 정보의 실시간 검색이 가능하다. 경로 정보 및 친구 위치 찾기라는 물론 가까운 현금출납기, 식당 위치 등 시설 정보를 조화할 수 있으며, 이벤트/할인 중인 상점, 교통정보 정보 등 알림 기능과 더불어 지역적으로 분산된 자원의 관리(택시, 배달원, 대여 장비, 병원 등)도 가능하다.

주 : 라스트서파좌(좌), foursquare(우)

<그림 4-9> 위치기반 서비스를 적용한 애플리케이션 사례

6) 웹사이트 ‘http://ko.wikipedia.org’의 중간현실 정의에서 인용함
4. Now Biking 작동 매뉴얼

본 연구에서 개발한 ‘Now Biking’은 이용자의 위치를 파악하여 증강현실 (AR)로 공공자전거 이용정보, 자전거 판매점 및 수리점, 지하철역 등에 대한 정보를 제공하며, 이는 대전광역시와 고양시를 대상으로 사용할 수 있다.

‘Now Biking’을 실행하면 카메라를 통해 주변 모습을 볼 수 있으며, 이때 방향에 따라 거치소의 위치가 거리 표시와 함께 화면에 표시된다. 화면 우측 상단에는 레이더를 통해 주변 위치가 표시되며, 좌측 하단의 버튼을 이용하면 내가 찾고 싶은 곳을 주변 위치별로 선택할 수 있는데, 이때 위치는 복수 선택이 가능하다. 우측 하단의 버튼을 이용하면 주변 위치에 대한 검색 범위의 선택이 가능하다. ‘+’단추를 누르면 범위가 늘어나고 ‘-’단추를
누르면 범위가 줄어든다. 범위는 100m, 300m, 500m, 1km, 1.5km, 2km, 2.5km, 3km로 조정 가능하다.

<그림 4-12> 'Now Biking' 실행화면(지도) <그림 4-13> 'Now Biking' 실행화면(상세정보)

‘아이폰’을 수평으로 하면, 증강현실 카메라 화면이 지도화면으로 바뀐다. 화면으로 표시된 곳이 검색 목표 지점이다. 이때 밝간색 편은 거치소, 보라색 편은 자전거점, 녹색 편은 지하철을 의미한다. <그림 4-12>와 <그림 4-13>은 증강현실 카메라 화면으로, 지도화면에서 내가 찾고 있는 위치를 탐색할 때 나타나는 상세화면이다. 여기에는 위치의 이름과 종류, 지도상에서의 위치와 거리를 표시한다.

<그림 4-14> 역시 증강현실 카메라 화면으로, 지도 화면의 좌측 상단에 있는 정보 버튼을 누를 때 나오는 화면이다. 대전·고양시의 공공자전거와 관련된 정보가 표시되며, 전화를 걸거나 홈페이지로 바로 이동할 수 있다.
제4장 자전거 교통정보 제공을 위한 스마트폰 활용방안

<그림 4-14> 관련 기관 정보
제5장 결론 및 정책 제언

전 세계적으로 자전거 이용 활성화를 통해 비효율적인 자동차 중심의 교통체계를 효율적인 교통체계로 변화시켜야 한다는 인식이 퍼지고 있다. 자전거 이용은 에너지 소비와 온실가스 배출이 없고 신체 활동 및 사람들 사이의 교류가 증대되며, 자동차가 차지하고 있는 공간을 사람에게 되돌려 줄 수 있다. 또한 가까운 거리는 자전거가 다른 교통수단에 비해 이동시간 등의 측면에서 경쟁력을 지니고 있는 점도 포함되어 있다.

우리나라는 급속한 경제성장과 함께 자동차 보유율과 이용률이 지속적으로 증가하였다. 반면, 자전거 이용 활성화를 위한 노력은 자동차에 비해 상대적으로 적게 이루어졌다. 다행히 최근 자전거 이용 활성화를 위한 중앙정부 및 지자체의 많은 노력이 이루어지고 있다. 자전거 교통정보는 크게 일반 정보와 이용자 위치기반 정보로 구분할 수 있는데, 일반 정보는 책, 지도, 홈페이지 등을 통해 제공되고 있는 반면 이용자 위치기반 정보는 현재는 충분히 제공되지 못하고 있다. 이용자의 위치를 파악하고 위치에 해당하는 필요 정보를 제공하기 때문에 자전거 이용의 편리성을 높일 수 있다. 따라서 자전거 이용활성화를 위해서는 이용자가 쉽게 빠르게 원하는 정보를 이용할 수 있는 정보 제공 환경을 구축할 필요가 있다.

최근의 교통정보는 기존의 수동적이고 공급자 위주의 교통정보 제공방식
제5장 결론 및 정책 제언

39

에서, 수요자 중심의 능동적 제공방식으로 변화하고 있다. 수요자 중심의 실시간 교통정보를 이용자의 위치에 맞게 제공하는 방식으로 각 개인이 휴대하고 있는 스마트폰이 매우 유용하게 활용될 수 있다.

스마트폰 이용자는 매우 빠르게 증가하고 있는데 2010년 5월 현재 200만 대가 보급되었으며, 이는 향후 더욱 증가할 것으로 예상되고 있다. 현재 자전거 관련 애플리케이션이 많이 개발되어 있지만 교통 측면에서 제공하고 있는 애플리케이션은 거의 없으며, 특히 우리나라에 맞는 정보를 제공하는 것은 극히 적은 실정이다. 스마트폰을 이용하여 자전거 이용자에게 위치기반 실시간 자전거 교통정보를 제공함으로써 자전거 이용을 활성화하는 데 중요한 역할을 하도록 자전거 교통정보 제공 환경을 구축할 필요가 있다.

이러한 배경 하에 본 연구에서는 자전거와 관련한 자전거도로 정보, 공공 자전거 이용정보, 자전거 편의시설 정보 등 다양한 정보를 자전거 이용자들에게 쉽고 빠르게 이용자가 맞는 정보를 제공하는 방식에 대한 연구를 수행하였다. 본 연구에서는 이용자 위치기반 정보의 종류를 검토하고, 이를 제공하기 위한 방안으로 스마트폰의 가능성을 분석하였다. 이와 함께 대전광역시와 경기도 고양시를 대상으로 하여 공공자전거 이용정보, 지하철 위치 등이 포함된 자전거 교통정보 제공 애플리케이션인 ‘Now Biking’을 개발하였다. ‘Now Biking’은 2010년 6월 15일 미국 애플사에 등록되어 서비스가 시행되고 있다.

본 연구에서 개발한 자전거 교통정보 애플리케이션 ‘Now Biking’은 교통 측면에서 개발된 애플리케이션으로 자전거 이용의 편리성을 향상시킬 수 있을 것으로 예상된다. 하지만 모든 정보를 포함하고 있는 것은 아니기 때문에 향후 자전거 이용자의 편리성을 향상시킬 수 있는 애플리케이션을 개발하여 자전거 이용을 유도할 수 있어야 한다. 향후 보완되어야 할 점은 다음과 같다.

먼저 현재 구축된 자전거 도로 및 노선, 주차장 등의 이용 시설, 그리고 자전거 관련 제도에 대한 정보가 제공되어야 하며, 공공자전거의 경우 안내
와 더불어 예약 기능을 추가하여 편의성을 높일 필요가 있다. 또한 최근 자전거 이용 활성화를 위한 다양한 정책으로 인해 자전거 이용 환경이 빠르게 변화하고 있기 때문에 지속적인 정보의 업데이트가 필요하다. 더불어 자동차 내비게이션과 같이 자전거 경로 탐색 및 제공에 대한 연구도 중요하며, 경로 탐색의 경우에는 연령 등 이용자의 특성과 경사도 등의 특성을 고려하여 이용자 맞춤형 경로 제공이 되어야 할 것이다. 이와 함께 대중교통수단의 정보와 연계함으로써 자전거 이용 시 종합적인 정보 제공이 이루어져야 할 것이다. 나아가 역사, 관광, 환경 특성 등의 정보 및 자전거 이용 시 할인 및 기타 유용한 정보 등 종합적인 정보를 제공할 수 있는 기능으로 발전시킬 필요가 있다.
참고문헌

[국내문헌]

2. 와이즈인포, 『스마트폰 시장/기술 및 연관 산업 동향 리포트』, 2009.

[웹사이트]

7. http://www.zdnet.co.kr(지디넷 코리아)
Abstract

How to Provide Bicycle Transportation Information Using Smartphone

Dongjun KIM · Jaeyong LEE · Seongyub JEONG

As climate change and energy crisis emerge as challenging issues, many countries try to reduce energy use and green house gas (GHG) emission. The portion of GHG emission in transportation sector is about 20% of total GHG emission in Korea. Therefore it is significantly important to make an effort to reduce GHG emission in transportation sector.

Bicycle has many benefits such as no energy use, no GHG emission, long distance trip, etc. For these reasons, many countries, including Korea, try to raise bicycle use and drop automobile use.

To raise bicycle use, it is necessary to provide useful bicycle transportation information as well as construct bicycle infrastructures. So far, however, the effort to make useful information provision system is insufficient. It is hard for bicycle users to use bicycle-
related information based on their location and real-time information.

Bicycle information is classified into general information and user's location-based information by its information source. General information is derived from books, maps, internet homepages, etc. Location-based information is given by a device that catches bicycle users' location using GPS(Global Positioning System). Using the real-time and location-based information, bicycle users can ride bicycle easily and conveniently. Consequently, it will cause the increase in bicycle use. Thus, it is essential for Korean government to design an efficient method to provide bicycle information.

Recently Smartphone emerges as a very powerful device to access transportation information. More than 2 millions of Smartphones are sold within the past, six months, and Smartphone sales are expected to increase further.

Under this current situation, we studied about the effective method to provide bicycle transportation information for bicycle users. This study also aimed at suggesting bicycle information provision strategies using the Smartphone.

First of all, we studied characteristics of bicycle information and several kinds of devices that provide information on bicycle roads and parking lots, real-time information of public bike system(PBS), and convenient facilities related to bicycle use. To raise its use, real-time and location-based bicycle information should be provided. Then, we can discuss the possibility of the Smartphone as a provider of bicycle information. As the Smartphone has GPS system and wireless connectivity to the internet, it can be a very useful provider of bicycle transportation information. Based on these merits, we suggest strategies to provide bicycle transportation information with Smartphone in the study.
We developed Smartphone application, ‘Now Biking’, and launched its service on 15, June 2010. It provides real-time information on public bike system, and location of subway stations in Goyang and Daejeon city.
수시연구 2010-03 스마트폰을 활용한 자전거 교통정보 제공방안
How to Provide Bicycle Transportation Information Using Smartphone

인쇄 2010년 6월 25일
발행 2010년 6월 30일
발행인 황기연
발행처 한국교통연구원
경기도 고양시 일산서구 고양대로 315
전화 : 031-910-3114 팩스 : 031-910-3231
홈페이지 : www.koti.re.kr
인쇄처 (주)동문문화사
가격 6,000원

ⓒ 2010 한국교통연구원
* 본 보고서 내용의 무단 전재·재배·복사를 금합니다.